核心技术
Core technology
AI医疗影像技术
AI医疗影像的定义
人工智能应用于医学影像,主要是通过深度学习,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助医生更快地获取影像信息,进行定性定量分析,提升医生看图/读图的效率,协助发现隐藏病灶。
人工智能通过影像分类、目标检测、图像分割、图像检索等方式,完成病灶识别与标注、三维重建、靶区自动勾画与自适应放疗等功能,应用在疾病的筛查、诊断和治疗阶段。人工智能技术发展加快了医学影像诊断速度,提升了影像诊断的精准度,并给影像科医生的“阅片”方式带来改变,其主要表现在:
(1)阅片方式改变。人工智能应用直接实现机器自动对片子进行初筛、判断、病灶勾选等,医生只需要最后负责判断即可。
(2)阅片速度改变。人工智能自动快速初筛,并勾选病灶,医生只负责关键部位的复判,为医生节省大量烦琐的初筛过程。时间大为缩短,效率提高。
(3)精准度改变。人工智能具备稳定性和全面性双面特点,不受工作时间长短影响,且能够做到片子全域完整观察无遗漏,快速稳定地完成初筛、判断,最后由专业医生对关键部位进行复判。因此,阅片的精准度得到双重保障。
AI医疗影像主要应用场景
目前人工智能在医学影像领域的应用方向主要有两类,即图像病例分类、目标或病灶检测分割。
(1)图像病例分类.病例分类主要是对一套典型多张图片进行分析,从而得出相应的病例的分类结果。在这一类问题中,通常存在着相应任务的病例图像数据量较少的问题,这也导致处理该类问题时通常会采用计算机视觉中的迁移学习算法。迁移学习算法大多会使用经过自然图像预训练好的网络模型,通常有把预训练模型作为特征提取器和在预训练模型中对医学图像数据进行微调两种用法。
这两种用法都非常有效并且得到了广泛的应用,然而在部分分类问题上,存在着模型难以收敛、准确率不高的情况,甚至精度都无法超越古典的人工分析算法。其根本原因还是由于数据量不够充分,在迁移学习算法过程中出现过拟合现象。但是随着不同深度学习网络算法迭代更新,尤其是美国InceptionV3网络架构的出现,使得皮肤癌分类检测问题取得了超越人类专家的成绩。模型难以收敛、准确率不高等弊端逐渐得到了解决。
新一代人工智能技术在早期萌发阶段就已经被应用到了医学图像的病例分类中。早在2013年日本学者就发表了关于DBNs网络和SAEs网络应用于脑部的核磁共振图像分类。在卷积神经网络(CNNs)普遍应用于计算机视觉之后,图像分类问题的标配便成了卷积神经网络及其各类变种。
在2015年至2017年间47篇关于医疗图像病例的文章中,有36篇是采用卷积神经网络模型、5篇是采用AEs模型、6篇采用RBMs模型,这些文章应用的医学图像领域非常广,从脑部核磁共振MRI到肺部CT扫描都有应用。总而言之,卷积神经网络是医疗图像中一个标准的模型算法,尤其是预训练模型迁移学习算法的技巧已经展示出了其强大的能力。
(2)目标或病灶检测分割
目标或病变分类与上述的图像、病例分类不同,其更加注重于图像的某一部分或细小的组织、病变等局部区别的分类,例如常见的肺结节检测与分类。对于很多任务来说,局部病变区域与全局的概念信息对这类分类结果起着非常重要的作用。很多学者采用了新型的多信息新融合架构进行网络拓扑(例如残差网络结构),以及不同尺度的信息结合,有针对性地对医疗图像做模型输入以及运算调整。
靶区勾画:放射治疗、手术、化疗是目前肿瘤治疗的三大主要手段。利用医学图像引导,放疗病人不需要开刀,住院时间短,恢复快。在放疗前,每个病人需要拍摄医学影像(CT、MRI等)几十甚至上百张,放疗医生凭借经验勾画每个患者的放疗靶区需要半小时至几个小时,耗时耗力,导致治疗病人有限,勾画的精确度不理想。
受医生经验、情绪、耐心等因素的影响,不同医生勾画同一个病人的医学影像靶区会产生不同的勾画效果。靶区勾画与治疗方案设计具有一定的技术含量并需要医生的经验,但是其中包含了大量的重复工作,这些劳动密集型的工作是人工智能的专长,利用人工智能做这些事情将节约肿瘤医生大量的时间。
将人工智能技术应用在放疗领域,是很多人工智能+医疗公司的一大主要研发方向。目前,连心医疗、医诺科技、全域医疗、普润医疗、慧软科技等公司都在开发相关的产品。
医学影像诊断系统构建的核心技术
医学影像诊断系统构建的核心技术包括模型设计、模型构建、算法选择、服务建立四个环节。
1. 模型设计
临床问题的选择,即 AI 模型设计至关重要。
第一,该模型解决的问题必须是临床医师及影像医师普遍关切的,其解决效率或准确性的提升是可以使得患者普遍受益的。
第二,模型设计需要参考相关领域最新的临床指南规范,并在现有医疗流程上对疾病诊断治疗做出贡献。
第三,必须使用足够量的数据及数据标注来进行学习,如应把学习的重点放在常见肿瘤的鉴别,而非罕见肿瘤的诊断上。因此模型设计的关键在于选择最有利于医师决策和患者受益的问题,并且所选择解决的问题还必须有大量易于获取和标注的学习数据。
2. 模型构建
模型的建立包括学习数据的结构化构建,使用学习算法建立模型,最后进行模型的验证。高质量的结构化数据是学习任务的基础。
第一,数据的收集。影像数据采集设备机型繁多、参数各异、质控不同,这些都将影响 AI 的最终应用,故影像数据采集时应首先规划 AI 模型对数据参数及质量的要求,如肺结节检出使用薄层高分辨 CT 而不是厚层数据。在AI 具有应用潜力的基础上,尽可能覆盖不同厂家、参数、图像质量及疾病种类。
第二,数据标注。数据的学习标签标注应直接面向需学习的目标问题,如肺结节检出任务标注结节坐标轮廓,良恶性鉴别任务标注结节病理类型。在标注任务中尽量使用“金标准”标签,如病理、基因型、生存期等;采用影像科医师的量化知识,如病变位置、范围、良恶性评分等。数据集的质量控制非常重要,提高数据集的标注准确性可有效提高模型的准确性和鲁棒性。所以高质量结构化数据构建的关键点在于影像数据采集的质量和广泛代表性,以及数据标注的准确性。
3. 算法选择
不同于传统计算机辅助诊断使用的机器视觉算法和机器学习算法,新一代AI 算法可应用更大样本数据量突破准确率的瓶颈限制,使得模型可以在临床真正高效使用。不同建模方式的选择应根据学习数据的数据量和复杂度来规划,包括:
第一,针对大量学习数据,推荐使用包括各种神经网络的深度学习作为学习器建模;
第二,针对中等量学习数据可以尝试使用深度学习建模,效果不佳时可以考虑采用神经网络提取特征,使用机器学习方法建立模型的折中方式;
第三,针对少量学习数据,推荐使用影像组学方法先进行高通量检验,提取病变范围内的影像特征,使用机器学习方法建立模型;第四,虽然只具有中等量学习数据,但有大量面对其他问题的相似模态数据,可以尝试使用迁移学习方式,将大样本数据经验应用到小样本数据学习中。
无论使用哪一种模型建立算法,对模型准确性、鲁棒性、泛化性的验证均必不可少。在训练数据集内可使用交叉验证法验证模型的稳定性;此外还需要独立的数据集验证模型的鲁棒性和泛化性,最后在临床使用中的证据将为模型在真实世界中的表现提供评估。
所以 AI 算法选择和模型建立的关键点在于面向数据和问题的算法选择和模型验证。斯坦福大学提出的 CheXNet 深度卷积神经网络模型,在利用胸部 X 线片对肺炎患者的患病情况进行判断的基础上,考虑了模型的可解释性。
该模型利用 Dense Net 深度神经网络模型对图像特征进行分析,不仅在利用胸部 X 线片作为诊断依据的情况下,精度超过人类医生的平均水平,还通过计算模型每个像素点上的各类图像特征的权值之和,衡量图像各位置在分类决策中的重要性,解释决策过程,帮助人类医生对患者病情进行理解。
卡耐基梅隆大学邢波教授近期提出一个多任务协同框架,通过引入协同注意力机制,来对异常区域进行准确定位和概括。不仅通过标签对图像内容进行描述,还利用层级长短期记忆(LSTM)模型生成长文本形式的医学影像分析报告,通过文字描述对分析结果进行描述和解释。
4. 服务建立
结合模型设计时的应用特点、临床需求和医师的工作习惯,建立合理的服务模式。
第一,当前云影像技术发展迅猛,其与 AI 技术的结合可以更好地为医疗机构、特别是基层医院提供图像传输、储存、辅助诊断的一揽子解决方案,有利于提高医疗机构的运转效率及诊断准确性。
第二,在与现有工作流程结合方面,可以与 RIS 系统结合提供 AI 结构化报告,同时与 PACS 系统结合将 AI 综合分析报告使用DICOM 格式提交给PACS 系统,并在医师浏览图像时进行病变标注提示。
总体上,虽然一项 AI医学影像具体技术的优劣取决于多个环节,但当前阶段应关注的主要问题体现在AI 技术产品的应用对象设置、服务模式以及准确性方面。良好的检查敏感性及诊断准确性是服务建立的基础。
为达到此目的,除了优秀的图像分割、识别算法以及 AI 分类算法外,更应重视构建包括数据库和知识库的高质量结构化数据集。此外,还要注重具有临床诊断应用价值且符合临床规范的 AI 技术的目的设置、符合临床医师应用习惯。